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Abstract

We present a high-order discontinuous Galerkin discretization of the unsteady incompressible Navier–Stokes equations
in convection-dominated flows using triangular and tetrahedral meshes. The scheme is based on a semi-explicit temporal
discretization with explicit treatment of the nonlinear term and implicit treatment of the Stokes operator. The nonlinear
term is discretized in divergence form by using the local Lax–Friedrichs fluxes; thus, local conservativity is inherent. Spatial
discretization of the Stokes operator has employed both equal-order (Pk � Pk) and mixed-order (Pk � Pk�1) velocity and
pressure approximations. A second-order approximate algebraic splitting is used to decouple the velocity and pressure cal-
culations leading to an algebraic Helmholtz equation for each component of the velocity and a consistent Poisson equation
for the pressure. The consistent Poisson operator is replaced by an equivalent (in stability and convergence) operator,
namely that arising from the interior penalty discretization of the standard Poisson operator with appropriate boundary
conditions. This yields a simpler and more efficient method, characterized by a compact stencil size.

We show the temporal and spatial behavior of the method by solving some popular benchmarking tests. For an
unsteady Stokes problem, second-order temporal convergence is obtained, while for the Taylor vortex test problem on
both semi-structured and fully unstructured triangular meshes, spectral convergence with respect to the polynomial degree
k is obtained. By studying the Orr–Sommerfeld stability problem, we demonstrate that the Pk � Pk method yields a stable
solution, while the Pk � Pk�1 formulation leads to unphysical instability. The good performance of the method is further
shown by simulating vortex shedding in flow past a square cylinder. We conclude that the proposed discontinuous Galer-
kin method with the Pk � Pk formulation is an efficient scheme for accurate and stable solution of the unsteady Navier–
Stokes equations in convection-dominated flows.
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1. Introduction

Discontinuous Galerkin (DG) methods are gaining popularity in solving partial differential equations aris-
ing from modeling diverse scientific and engineering problems. Compared with the classical continuous Galer-
kin methods, DG methods have advantages in facilitating non-conforming mesh and functional adaptivity,
retaining the local conservativity of physical quantities and yielding more robust discretizations in high Rey-
nolds number flow simulations (e.g., [19,24,26]).

DG methods for pure elliptic problems and hyperbolic conservation laws have been extensively developed
and analyzed during the past three decades (e.g, see the review articles [2] for elliptic problems and [24] for
hyperbolic systems). Only recently, however have the DG methods been extended to the numerical solution
of incompressible flows, including the Stokes and the incompressible Navier–Stokes equations (see articles
[20,18,21] for the Stokes problem and [29,23] for the Navier–Stokes equations). All of the above work has con-
sidered only stationary Stokes or Navier–Stokes equations. Therefore, the objective of this paper is to propose
an efficient DG scheme for the unsteady incompressible Navier–Stokes equations. Our approach is tailored to
convection-dominated regimes encountered in transitional and turbulent flows. The approach is based on a
semi-explicit temporal discretization in which the convective term is treated explicitly and the Stokes operator
is treated implicitly. It employs a high-order DG spatial discretization on triangular and tetrahedral elements
in two and three space dimensions, respectively. To put our methodology in perspective, we review related
work on the DG treatment of the convective and Stokes operators.

1.1. Review of DG discretization of the convective operator

Several DG methods for the spatial discretization of the convective term have recently been proposed.
Cockburn et al. [22] provided an a priori error estimate for the DG solution of the Oseen problem by treating
the linear convective term with an upwinding scheme. For the nonlinear Navier–Stokes equations with non-
overlapping domain decompositions, Girault et al. [29] devised a stable method by discretizing the convective
term in a skew-symmetric form. To assure that the DG formulation yields a locally conservative discretization,
a property that is not offered by the above two methods, Cockburn et al. [23] proposed two strategies. In the
first, they linearized the convective term and then used the results of [22] for the Oseen problem to prove the
stability of the discrete solution. Through an iterative procedure they then recovered a locally conservative
velocity field. In their second formulation, the pressure p was replaced with the Bernoulli pressure p þ 1

2
juj2;

hence, local conservativity was attained. With this method, one can prove the boundedness of the approximate
solution for the case of Dirichlet boundary conditions. For the case of outflow boundary conditions, however,
this type of formulation leads to an unphysical solution at the outlet, as previously shown in the context of the
continuous Galerkin approximation [12]. Thus, for engineering problems that are typically formulated on
truncated domains with outflow boundary conditions, this method is not suitable.

We here propose a new strategy. We discretize the nonlinear term in the divergence form and use the local
Lax–Friedrichs numerical fluxes to obtain stable results. Discretizing the nonlinear term in the divergence
form immediately yields local conservativity, a property that the two previously proposed methods either
do not offer (the method of Girault et al. [29]) or require an extra iteration procedures to attain (the first
method of Cockburn et al. [23]). Unlike the second method of Cockburn et al. [23], our method applies to
any boundary conditions, including Dirichlet, periodic, and outflow conditions.

1.2. Review of DG discretization of the Stokes operator

For the DG discretization of the Stokes operator, several studies have been reported in the literature, begin-
ning with Hansbo and Larson [20]. For simplicial triangulations, they used the interior penalty (IP) method [1]
for the viscous term and approximating polynomial degrees k and k � 1 for the velocity and the pressure,
respectively (Pk � Pk�1, mixed-order formulation). Cockburn et al. [21] used the so-called local DG method
for the viscous term [32,25] and proved an inf-sup condition for equal approximating polynomial degree, k for
the velocity and pressure (Pk � Pk, equal-order formulation), by adding a stabilization term to the discretized
divergence-free constraint. Schötzau et al. [19] similarly employed the equal-order formulation but with an IP
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discretization of the Laplacian. In our methodology, we consider the IP method for the viscous term and both
the Pk � Pk�1 and Pk � Pk formulations. We prefer the IP method over the local DG method for its simplicity
and its compact stencil size.

Employing the semi-explicit temporal and the DG spatial discretizations leads to an algebraic Stokes sys-
tem to solve at each time step. For this system, we propose a new class of second-order approximate splitting
methods. Applying algebraic splitting procedures introduced earlier in the context of the finite volume, finite
element or spectral element methods (e.g., [38,30,5], respectively) yields a Helmholtz system for the velocity
and a consistent Poisson equation with an extended stencil size for the pressure variable to be solved at each
time step. In the DG setting, however, we are able to replace this pressure operator with an equivalent oper-
ator that is simpler and computationally more efficient. This operator offers a compact stencil size and arises
from the IP discretization of the Poisson equation with appropriate boundary conditions.

We note that the application of the algebraic splitting for solving the Stokes system on triangular or tetra-
hedral meshes is more advantageous in the DG setting than in the continuous Galerkin method. In the DG
setting, the pressure operator has compact stencil-size, and the mass matrix is block diagonal. The block diag-
onal structure of the mass matrix permits a simple and efficient preconditioner for the iterative solution of the
Helmholtz system of the velocity as explained in Section 2. None of these properties exists in the continuous
counterpart. Furthermore, our algebraic splitting approach is superior to the Chorin–Temam projection
scheme (differential splittings) [43,44] in the sense that our scheme avoids unphysical boundary conditions
for the pressure equation inherent in the differential splittings.

Below, we describe details of our solution procedure. We then present some implementation details in Sec-
tion 3. These are followed in Section 4 by numerical experiments to demonstrate the temporal and spatial
accuracy of the method. In Section 5, the work is summarized and some future directions are explored.

2. Navier–Stokes discretization

We seek the numerical solution of the unsteady incompressible Navier–Stokes equations
ou

ot
þ u � ru ¼ 1

Re
r2u�rp þ f in X� ½0; T �; ð1aÞ

r � u ¼ 0 in X� ½0; T �; ð1bÞ
uðt ¼ 0Þ ¼ u0 in X; ð1cÞ
u ¼ gD on oXD; ð1dÞ
1

Re
ou

on
� pn ¼ 0 on oXN ; ð1eÞ

sðxÞ ¼ sðx0Þ x; x0 2 oXP ; ð1fÞ
where u and p are the non-dimensionalized velocity vector and pressure, respectively, and f is a known body
force. The Reynolds number is Re = (UL)/m, with U a characteristic velocity, L a length scale, t a dimension-
less time and m the kinematic viscosity. Eq. (1c) represents an appropriate initial condition, and Eqs. (1d)–(1f)
represent Dirichlet, outflow, and periodic boundary conditions (BCs), respectively. Note that oX =
oXD [ oXN [ oXP. s represents any component of the velocity vector or the pressure, and x and x 0 are two
periodic points. X is a polygonal domain of dimension d = 2, or 3, and T is the total integration time.

The numerical solution of the above system consists of two parts: temporal discretization and spatial dis-
cretization. For temporal discretization, we use a semi-explicit scheme, in which the nonlinear term is treated
explicitly and the Stokes operator is treated implicitly. We use a third-order backward differentiation (BD3)
scheme for the unsteady term and a third-order extrapolation (EX3) for the nonlinear term, as proposed by
Karniadakis et al. [13]. Let the total integration time T be divided into uniform time steps of size Dt. Then the
semi-discretized forms of Eqs. (1a) and (1b) at time step n become
� 1

Re
r2 þ b0

Dt

� �
unþ1 þrpnþ1 ¼ b1

Dt
un

1 þ
b2

Dt
un�1

2 þ b3

Dt
un�2

2

� �
� ðc1cn þ c2cn�1 þ c3cn�2Þ þ fnþ1 in X; ð2aÞ

r � unþ1 ¼ 0 in X: ð2bÞ
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Here c represents the nonlinear term; b0 = 11/6, b1 = 3, b2 = �3/2, and b3 = 1/3 are coefficients associated
with BD3; and c1 = 3, c2 = �3, and c3 = 1 are coefficients associated with EX3. For ease of notation, we will
drop the superscripts referring to the time steps and absorb the right-hand side of Eq. (2a) into f.

Due to the explicit treatment of the convective term, time steps are limited by a CFL condition. We choose
Dt based on the estimate
1 Th
Dt � O
L

Uk2

� �
; ð3Þ
reported in [14] for an advection model problem. Here L is an integral length scale (typically the mesh element
size) and U is a characteristic velocity.

Below, we introduce some notation and approximate spaces, then describe the spatial discretization includ-
ing the DG treatment of the nonlinear and Stokes operators.

2.1. Preliminaries

Let CI denote the collection of all interior faces1. Then CIDP = CI [ oXD [ oXP, CINP = CI [ oXN [ oXP,
and CIDNP = CI [ oXD [ oXN [ oXP. On a face e 2 CI shared with two elements K+ and K�, we permanently
associate e with a unit normal vector ne directed from K+ to K�, and define the jump and average operators of
a function / by
s/t :¼ ð/jKþÞje � ð/jK�Þje; f/g ¼ 1

2
ð/jKþÞje þ

1

2
ð/jK�Þje:
For e 2 oXP, we use the same definitions except that if K+ contains e, K� is an element containing the periodic
face of e. On a Dirichlet or outflow face e, ne is the unit normal vector n outward to X, and the jump and
average of the operator / coincide with the trace of /.

The discontinuous approximate spaces we use are
Vk :¼ fv 2 L2ðXÞjvjK 2 P kðKÞ; 8K 2Thg ð4Þ

and its vector version Vd

k . Pk(K) is the set of polynomials of total degree at most k on K, k P 1, with K being a
simplicial element of the geometrically conforming triangulation Th of the domain X. While our methodology
applies to a geometrically and functionally nonconforming approximation, for simplicity, we consider only
conforming triangulations and uniform polynomial degrees over all elements.

2.2. Nonlinear treatment

Using the divergence free constraint $ Æ u = 0, we write the nonlinear term in the divergence form
u � ru ¼ u � ruþ ur � u � r � ðu� uÞ;

where u � v: = ui vj, i, j = 1, . . .,d. We can now use ideas for the DG discretization of the nonlinear term pre-
viously developed in the context of hyperbolic conservation laws [24]. Let u be approximated by uh 2Vd

k ; for
simplicity we use g instead of uh � uh hereafter. Multiplying the nonlinear term by a test function vh 2Vd

k ,
integrating over the whole domain X, and carrying out integration by parts, we obtain
Z

X
vh � r � g dx ¼ �

X
K

Z
K

g � r � vh dxþ
X
CIDNP

Z
e

ne � sg � vhtds:
To complete the discretization, we replace the integrand ne Æ sg Æ vhb in the surface integral with the local Lax–

Friedrich fluxes ne � sg � vht
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
Z
X

vh � r � g dx ¼ �
X

K

Z
K

g � r � vh dxþ
X
CIDNP

Z
e

ne � sg � vht
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

ds; ð5Þ
e terms ‘‘face’’ and ‘‘surface integral’’ denote edge and line integral in two space dimensions as well.
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where
Fig. 1.
on an u
local D
triangl
second
ne � sg � vht
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

¼ ne � fgg � svhtþ
1

2
KK;esuht � svht: ð6Þ
In Eq. (6), and only in Eq. (6), and for e 2 XD, the operators {} and s b have slightly different interpreta-

tions than those previously defined. Specifically, for e 2 XD, fgg ¼ 1
2
ððuh � uhÞje þ ðgD � gDÞjeÞ and suhb =

(uhje � gDje). To define KK,e, let k+ and k� be the largest eigenvalue (in absolute value) of the Jacobians

ðo=ouÞðg � neÞj�uKþ
and ðo=ouÞðg � neÞj�uK�

, respectively, with �uKþ and �uK� being the mean values of uh over the

entire element K+ and K�, respectively. Then,
KK;e ¼ maxðkþ; k�Þ: ð7Þ

For e 2 XP and e 2 XD, KK,e is defined similarly. Specifically, for e 2 XP and K+ containing e, K� contains the
periodic face of e. For e 2 XD and �uKþ being the mean of uh on K+ containing e, �uK� ¼ gD. For e 2 XN,
KK,e = 0.

Remark 1. The terms g Æ $ Æ vh and ne Æ {g} Æ svhb in Eqs. (5) and (6) are evaluated in index notation as:
g � r � vh :¼ gij
ovhi

oxj
; i; j ¼ 1; . . . ; d; ð8aÞ

ne � fgg � svht :¼ nejfgijgsvhit; i; j ¼ 1; . . . ; d; ð8bÞ
where repeated indices imply summation.

Remark 2. This choice of the numerical fluxes leads to a compact stencil size. As shown in Fig. 1a, the degrees
of freedom (DOF) of a reference element (black triangle) couple only with those of its immediate neighbors
(dark grey triangles).

2.3. Stokes discretization

To set the stage for describing our solution procedure for the unsteady Stokes system (2), we first review
two DG discretizations of the Poisson problem: the IP method of Arnold [1] and the method of Bassi and
Rebay [32], further developed in [25]. The latter method is referred to as the local DG method.

We seek the IP and the local DG formulations of the Poisson equation with Dirichlet, Neumann, and peri-
odic boundary conditions:
� Du ¼ f in X; ð9aÞ
u ¼ gD on oXD; ð9bÞ
ru � n ¼ gN; on oXN; ð9cÞ
uðxÞ ¼ uðx0Þ x; x0 2 oXP: ð9dÞ
a b

(a) Compact stencil of the IP discretization of the Laplacian, and the DG treatment of the nonlinear term discussed in Section 2.2
nstructured triangular mesh (DOF of the black triangle couple with those of dark grey triangles); (b) the extended stencil size of the
G discretization of the Laplacian on the same mesh (DOF of the black triangle couple with those of dark grey as well as light grey

es). The reference triangle is shown in black, the immediate neighbors of the reference triangle are denoted in dark grey, and the
layer of the neighbors is in light grey.
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2.3.1. IP formulation of the Poisson equation

In the IP formulation, the discontinuous approximation to the exact solution u, uh, is a member of the finite
element space Vk. The approximate solution is defined by requiring that
ahðuh; vhÞ ¼ fhðvhÞ 8vh 2Vk;
where
ahðu; vÞ ¼
X

K

Z
K
ru � rvdx�

X
CIDP

Z
e
½ne � frugsvtþ ne � frvgsut�dsþ

X
CIDP

Z
e

lsutsvtds; ð10aÞ

fhðvÞ ¼
Z

X
fvdxþ

Z
oXN

gNvdsþ
Z

oXD

gDðlv�rv � nÞds: ð10bÞ
The last term in Eq. (10a) is called the penalty term. It is added to enforce the coercivity of the bilinear form,
which requires the choice of a sufficiently large value for the penalty parameter l. The last integral in Eq. (10b)
is due to the weak imposition of the Dirichlet boundary conditions.

The minimum acceptable value for l depends on the triangulation and the approximating polynomial
degree. Although an explicit expression for l is not known for a general mesh topology, an expression for
the case of simplicial elements has been recently derived [31]. Specifically, here we have used
l ¼ ðk þ 1Þðk þ dÞ
d

max
K

SK

V K

� �
; ð11Þ
where SK and VK represent the surface area (perimeter in two dimensions) and volume (area in two dimen-
sions) of the element K, respectively. This is a slightly simplified version of Eq. (8) in [31].

2.3.2. Local DG formulation of the Poisson equation

In the local DG method, the Laplacian is first written as two first-order operators by introducing the aux-
iliary variable r:
ru ¼ r; ð12aÞ
� r � r ¼ f : ð12bÞ
In previous work, the approximations to u and r, uh and rh, have belonged to Vk and Vd
k , that is, spaces with

equal polynomial degrees (equal-order method). In addition to the equal polynomial degree spaces, here we
allow uh 2Vk and rh 2Vd

kþ1, spaces with mixed polynomial degrees (mixed-order method). This approach
is similar to our DG method for the Stokes operator, where both equal- and mixed-order methods are allowed.

The approximate solutions uh and rh are then defined by requiring that
dhðsh; uhÞ ¼ bhðrh; shÞ þ ghðshÞ 8sh 2Vd
k=V

d
kþ1; ð13aÞ

� dhðrh; vhÞ þ ehðuh; vhÞ ¼ fhðvhÞ 8vh 2Vk; ð13bÞ
where
dhðs; uÞ ¼ �
X

K

Z
K

ur � sdxþ
X
CINP

Z
e
fugsst � ne ds; ð14aÞ

bhðr; sÞ ¼
Z

X
r � sdx; ð14bÞ

ehðu; vÞ ¼
X
CIDP

Z
e

asutsvtds; ð14cÞ

ghðsÞ ¼ �
Z

oXD

gDs � nds; ð14dÞ

fhðvÞ ¼
Z

X
fvh dxþ

Z
oXN

gNvdsþ
Z

oXD

agDvds: ð14eÞ
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Here eh(u, v) is the penalty (stabilization) term and a = g/he, with g any positive number, and he ” diam(e).
Since g	 1 and g
 1 yield ill-conditioned matrices, as shown by Castillo [3], moderate values of
gð� Oð1ÞÞ should be chosen in practice. Note that the original formulation of Bassi and Rebay [32] lacks sta-
bilization, i.e., eh(u, v) = 0.

Remark 3. In the weak imposition of periodic BCs, for the IP and the local DG formulation, $u is also
assumed to be periodic, so as to yield a symmetric discretization.

Remark 4. Applying the nodal high-order basis (described in Section 3) in Eqs. (13a) and (13b) yields

T
" #� � � �
B D

D E

rh

uh
¼

z1

z2

; ð15Þ
where z1 and z2 represent the given right-hand side and boundary data. Here, a bold matrix consists of d iden-
tical blocks. If nu and nr are the number of degrees of freedom of a component of uh and rh, respectively, the
matrix B consists of d identical diagonal blocks of size nr · nr each, corresponding to the mass term, and the
matrix D consists of d blocks of size nu · nr each, corresponding to the divergence term. The matrix E is
nu · nu, corresponding to the penalty term. After elimination of rh from the above system, the matrix equation
for finding uh becomes
ð�DB�1DT þ EÞuh ¼ z; ð16Þ
where z corresponds to the given right-hand side and boundary data.

Remark 5. While the IP method offers a compact stencil size (Fig. 1a), the local DG method yields an
extended stencil size (Fig. 1b). The larger stencil size leads to higher computations and communications per
global stiffness matrix construction and global stiffness matrix-vector product.
2.4. DG formulation of the unsteady Stokes operator

Following [20,19], we first give the DG discretization of the system (2). The discontinuous approximations
uh and ph are defined by requiring that
Ahðuh; vhÞ þ Bhðuh; vhÞ þ Dhðvh; phÞ ¼ F hðvhÞ 8vh 2Vd
k ; ð17aÞ

Dhðuh; qhÞ ¼ GhðqhÞ 8qh 2Vk=Vk�1; ð17bÞ
where
Ahðu; vÞ ¼
X

K

Z
K

1

Re
ru : rvdx�

X
CIDP

Z
e

1

Re
½ne � frug � svtþ ne � frvg � sut�ds

þ
X
CIDP

Z
e

l
Re

sut � svtds; ð18aÞ

Bhðu; vÞ ¼
X

K

Z
K

b0

Dt
u � vdx; ð18bÞ

Dhðv; qÞ ¼ �
X

K

Z
K

qr � vdxþ
X
CIDP

Z
e
fqgsvt � ne ds; ð18cÞ

F hðvÞ ¼
Z

X
f � vdxþ

Z
XD

1

Re
½�gD � rv � nþ lgD � v�ds; ð18dÞ

GhðqÞ ¼
Z

qgD � nds: ð18eÞ

XD
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For the viscous term, the IP method is used because of its simplicity and compact stencil size. The discretiza-
tion of the two operators $p and $ Æ u are similar to that of $u and $ Æ r in Eqs. (13a) and (13b). The only
difference is that the roles of the Dirichlet and outflow boundary conditions are switched in the surface inte-
grals of Dh(v, q) and dh(u, s).

Remark 6. Analogous to Remark 1, the terms $u:$v and ne Æ {$u} Æ svb in Eq. (18a) are evaluated as:

oui ovi
ru : rv :¼
oxj oxj

i; j ¼ 1; . . . ; d; ð19aÞ

ne � frug � svt :¼ nej
oui

oxj

� �
svit i; j ¼ 1; . . . ; d: ð19bÞ
Now, let the matrix form of the discretized Stokes system be
H DT

D 0

" #
unþ1

pnþ1

" #
¼

fnþ1

gnþ1

" #
; ð20Þ
where H = (1/Re)A + (b0/Dt) B with A and B denoting the Laplacian and block diagonal mass matrices,
respectively. The descriptions of the matrices are similar to those in Eq. (15).

Applying an LU factorization procedure to the above system and writing the system for the pressure incre-
ment variable pn+1 � pn, instead of pn+1, yields
H 0

D �DH�1DT

� �
I H�1DT

0 I

" #
unþ1

pnþ1 � pn

" #
¼

fnþ1

gnþ1

" #
þ �DTpn

0

" #
:

By introducing the auxiliary vector eunþ1, the solution procedure for the above system can be written in three
steps as follows:
1: Heunþ1 ¼ fnþ1 �DTpn;

2: ð�DH�1DTÞðpnþ1 � pnÞ ¼ �Deunþ1 þ gnþ1;

3: unþ1 ¼ eunþ1 �H�1DTðpnþ1 � pnÞ:
ð21Þ
The first and second steps involve linear system solves, and the preferred approach is an iterative method. For
the pressure increment solution, step 2, each iteration requires extra inner iterations associated with the inver-
sion of matrix H. The inner iterations are avoided by replacing H�1 with the computationally more efficient
matrix HI = (Dt/b0)B�1, where B is block diagonal, and easily invertible. As shown in [30], this choice leads to
a second-order accurate approximation in time. Replacing H�1 with HI in (21), we obtain the approximate
split solution procedure
1: Heunþ1 ¼ fnþ1 �DTbpn
;

2: ð�DHID
TÞðbpnþ1 � bpnÞ ¼ �Deunþ1 þ gnþ1;

3: bunþ1 ¼ eunþ1 �HID
Tðbpnþ1 � bpnÞ

ð22Þ
where bu and bp are the approximations to u and p, respectively.
The first and the second steps are solved iteratively by using the conjugate gradient method. Since

Re/Dt
 1, the Helmholtz solves are effectively preconditioned by the block diagonal mass matrix, leading to
a small number of iterations typically of Oð1Þ. On the other hand, the pressure solve requires a more sophis-
ticated and more expensive preconditioner, and thus it is the dominant computation in terms of cost. More-
over, the cost of a single iteration without preconditioning is also higher for the pressure case, since the
pressure operator (�DHID

T) has an extended stencil similar to Fig. 1b. To alleviate this cost, one may attempt
to reduce the pressure stencil size. In the DG setting, this strategy appears plausible.

Careful inspection of the pressure operator (�DHID
T) reveals that this operator is identical (to within a

multiplicative constant) to the operator in Eq. (16) with E ¼ 0, except that the roles of Dirichlet and Neumann
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BCs are switched in D and D (compare the definition of the divergence in Eqs. (18c) and (14a)). In other
words, (�DHID

T) results from the application of the local DG method (with zero stabilization) to a Laplacian
with the following BCs:
rv � n ¼ 0 on oXD ð23aÞ
v ¼ 0 on oXN ð23bÞ
vðxÞ ¼ vðx0Þ x; x0 2 oXP: ð23cÞ
Having realized this, we propose to replace the pressure operator (�DHID
T) with the operator arising from

the IP discretization of the (negative) Laplacian with the above BCs:
Ahðu; vÞ ¼
X

K

Z
K
ru : rvdx�

X
CINP

Z
e
½ne � frug � svtþ ne � frvg � sut�dsþ

X
CINP

Z
e

lsut � svtds: ð24Þ
The justification is that the IP method and the local DG method are asymptotically similar for stability,
boundedness, and the optimal rate of convergence as shown by Arnold et al. [2] in a unified analysis of the
DG methods for elliptic problems. Note that since the replacement is applied at the algebraic level, no unphys-
ical BCs have been introduced. Denoting the matrix form of the operator (24) with A and then replacing
(�DHID

T) with A in (22) yields
1: Heunþ1 ¼ fnþ1 �DTbpn
;

2:
Dt
b0

Aðbpnþ1 � bpnÞ ¼ Deunþ1 � gnþ1;

3: bunþ1 ¼ eunþ1 �HI D
Tðbpnþ1 � bpnÞ:

ð25Þ
Using the solution procedure (25) instead of (22) simplifies the whole method, in the sense that we use the same
scheme (the IP method) for the velocity and pressure operators. Moreover, it enhances the overall efficiency of
the scheme by reducing the cost per iteration of a pressure solve.
3. Implementation

For the approximating polynomial space for the velocity or pressure restricted to each element, Pk(K), we
choose a high-order nodal basis consisting of Lagrange interpolating polynomials defined on a reference sim-
plex and the nodal set introduced in [9,10], in two and three space dimensions. More specifically, let
N = {ni 2 O: 0 6 i 6 N} denote the nodal set, where O is the reference element, and N + 1 = (k + 1)(k + 2)/2
or N + 1 = (k + 1)(k + 2)(k + 3)/6 for triangular or tetrahedral elements, respectively. Then, the nodal basis
is a set of the Lagrange interpolating polynomials with
LiðnjÞ ¼ dij; 8i; j ¼ 0; . . . ;N ;
where dij denotes the Kronecker delta. The interpolation representation of a function f 2 Pk(K) is
f ðnÞ ¼
XN

j¼0

f ðnjÞLjðnÞ: ð26Þ
The Lagrange polynomials are the solution of the following system:
XN

j¼0

biðnjÞLjðnÞ ¼ biðnÞ; 8i ¼ 0; . . . ;N ð27Þ
with J ¼ fbiðnÞjn 2 O; 0 6 i 6 Ng being an orthonormal basis consisting of multivariate analogues of the Ja-
cobi polynomials (see [41,17,6]).

We follow [16,11] for the derivative and inner-product calculations. Below, we describe quadrature for the
nonlinear term evaluation.
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3.1. Quadrature for the nonlinear term

The nonlinear term is evaluated by using quadrature of sufficiently high order to ensure accurate and stable
integration. Specifically, to eliminate any possible quadrature effects in the following tests, for k 6 6, a quad-
rature order q = 3k has been used, while for k = 7, and 8, q = 19 has been used. Let R = {fi 2 O: 0 6 i 6M}
denote a set of (M + 1) quadrature points and W = {wij:0 6 i 6M} be the corresponding set of quadrature
weights. Then, the numerical integration of the first term on the right-hand side of Eq. (5) is carried out as
Z

K
g � r � vh dx �

XM

i¼0

J KwigðfiÞ � r � vhðfiÞ; ð28Þ
where
gðfiÞ ¼
XN

j¼0

LjðfiÞgðnjÞ; ð29aÞ

r � vhðfiÞ ¼
XN

j¼0

LjðfiÞr � vhðnjÞ ð29bÞ
and JK is the Jacobian of the affine map between O and K. The numerical integration of the surface integral in
Eq. (5) is carried out in a similar manner. For the following tests, we have used R and W reported in [40].
4. Verification

We have programmed a two-dimensional version of the above scheme in C++ using the algorithm oriented
mesh database (AOMD) [39] and the portable, extensible toolkit for scientific computing (PETSc) [36,37].

Below, we present some benchmarking tests to verify the accuracy of the proposed method. We will solve
an unsteady Stokes problem to confirm temporal convergence and will then examine the spatial accuracy and
the stability of the scheme using equal- and mixed-order methods for the Navier–Stokes equations for three
tests: the Taylor vortex problem, the Orr–Sommerfeld plane channel stability problem and flow past a square
cylinder at Re = 100.
4.1. Temporal error test

Using a second-order backward differentiation temporal discretization and our proposed DG scheme, we
solved the unsteady Stokes problem, (Eqs. (1a) and (1b) without the nonlinear term and the body force,
Re = 1.0) having the exact solution
u ¼ ðsinðxÞða sinðayÞ � cosðaÞ sinhðyÞÞiþ cosðxÞðcosðayÞ þ cosðaÞ coshðyÞÞjÞ expð�ktÞ; ð30aÞ
p ¼ k cosðaÞ cosðxÞ sinhðyÞ expð�ktÞ; ð30bÞ
where a = 2.883356 and k = 9.313739 [15]. The computational domain was X = [�1,1]2, and Dirichlet BCs
and initial conditions were based on the above exact solution. We used equal interpolation orders of 8 for
the velocity and pressure, and the mesh consisted of 72 semi-structured triangles (similar to that in
Fig. 3a). The following results were essentially identical to those obtained using a lower interpolation order
k = 7, confirming that spatial errors were dominated by the temporal errors, as required for a temporal con-
vergence study. We measured the errors in the L2 norms:
keuk ¼
kun � uhðnDtÞkL2ðXÞ

kunkL2ðXÞ
; ð31aÞ

kepk ¼
kpn � phðnDtÞkL2ðXÞ

kpnkL2ðXÞ
: ð31bÞ
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The L2 norms were calculated based on the nodal values. For a total integration time T = 0.1 during which the
initial solution decayed approximately threefold, the results are depicted in Fig. 2. The slope of the best linear
fit for the velocity is 1.99, verifying the expected convergence rate. For the pressure the slope is 1.83, slightly
smaller than the expected theoretical value.

4.2. Taylor vortex problem

For the first spatial error test, we solved the unsteady Navier–Stokes equations on the square domain
[�1,1]2 with Re = 100, Dirichlet BCs and initial conditions based on the exact solution:
Fig. 2.
proble
orders
u ¼ ð� cosðpxÞ sinðpyÞiþ sinðpxÞ cosðpyÞjÞ exp
�2p2t

Re

� �
; ð32aÞ

p ¼ � cosð2pxÞ þ cosð2pyÞ
4

exp
�4p2t

Re

� �
: ð32bÞ
We carried out convergence studies for both successive approximation order enrichment (p-convergence) and
successive mesh refinements (h-convergence).

For the p-convergence, two meshes were used: a semi-structured mesh (Fig. 3a) and a fully unstructured one
(Fig. 3b). The time step size Dt = 10�4 was chosen to satisfy the CFL condition and to ensure that the dom-
inant error was the spatial error. (This was verified by choosing a larger time step Dt = 2 · 10�4, which gave
virtually identical results). The relative maximum errors in the calculated velocity and pressure for both equal-
and mixed-order methods at T = 5 (corresponding to approximately threefold decay of the initial solution)
and for a range of polynomial degrees k = 2, . . ., 6 are depicted in Figs. 3c and d for the semi-structured
and unstructured meshes, respectively. Several points about the results are notable. First, an exponential rate
of convergence was obtained with respect to the approximating polynomial degree for both velocity and pres-
sure and for both mixed- and equal-order formulations. Second, for the semi-structured mesh, equal- and
mixed-order methods led to results with very similar accuracy. On the other hand, for the unstructured mesh,
using Pk � Pk interpolations yielded more accurate results in both velocity and pressure than those resulting
from Pk � Pk�1 interpolations.

To test the h-convergence, we only used the semi-structured mesh (similar to Fig. 3a). For the same time
step size and the total time as the former case, the relative L2 errors in calculated velocity versus element size
for a range of polynomial degrees k = 4, . . ., 8 for both Pk � Pk and Pk � Pk�1 formulations are depicted in
Figs. 4a and b, respectively. Figs. 4c and d show the corresponding results of equal- and mixed-order methods
for the calculated pressure. Similar to the p-convergence test, Pk � Pk methods led to slightly more accurate
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results than those of Pk � Pk�1 for most cases. Moreover, we observed optimal rate of convergence in velocity
for both Pk � Pk and Pk � Pk�1 formulations. For the pressure, on the other hand, optimal rates of conver-
gence were only obtained for the mixed-order method, as expected. The equal-order method led to suboptimal
rates for the pressure.

Note that although both equal- and mixed-order methods led to stable results for this simple problem, the
mixed-order method leads to unstable results for more challenging (high Reynolds number) tests such as Orr–
Sommerfeld stability problem as shown below.

4.3. Orr–Sommerfeld stability problem

We further investigated the spatial accuracy as well as the stability of our proposed method by solving the
Orr–Sommerfeld stability problem. This is a suitable benchmarking test in that it is an unforced time-depen-
dent solution of the Navier–Stokes equations for which an accurate solution is available from linear stability
analysis [7]. The geometry was a two-dimensional channel [x = 0, x = 2p] · [y = �1, y = 1]. Dirichlet BCs
were imposed in the spanwise direction (at y = �1 and y = 1) and periodic BCs were applied in the streamwise
direction (at x = 0 and x = 2p). The initial conditions were
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u ¼ 1� y2 þ �û; ð33aÞ
v ¼ �v̂; ð33bÞ
where (u,v) represent the velocity components in the (x, y) directions. Here ðû; v̂Þ (Tollmien–Schlichting waves,
T–S waves) correspond to the only unstable eigensolution of the Orr–Sommerfeld equation with wave number
unity at Re = 7500. We set � to 10�4. More details of this test can be found in [4].

According to linear stability theory, the perturbation energy
EðtÞ ¼
Z 2p

0

Z 1

�1

½ð1� y2 � uÞ2 þ v2�dy dx ð34Þ
should grow as e2xi t, where xi = 0.002234976 is the growth rate.
For both Pk � Pk and Pk � Pk�1 formulations with k = 6 and 8 and for a semi-structured mesh consisting

of 128 triangles, and Dt = 10�3 (smaller than Dt arising from the CFL condition) we plot the computed per-
turbation energy and its growth rate versus the normalized time (T/T0) in Figs. 5a and b, respectively. In the
same figures, the corresponding results from linear stability theory are also depicted. In the Pk � Pk formula-
tion for k = 6, we observed some dissipation (Fig. 5a); however, increasing the resolution to k = 8 led to per-
turbation energy growth almost identical to the theoretical one. We also calculated the error in the growth rate
at T = 60. For k = 6, 7, and 8, we obtained growth rates x = 0.001936496, 0.002156142, and 0.002234850.
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The corresponding errors calculated as eg = jx � xij/xi were eg = 1.34e � 1,3.53e � 2, and 5.62e � 5. A spec-
tral rate of convergence was clearly obtained.

In the Pk � Pk�1 formulation, however, we observed a totally different behavior. For k = 6, we observed
perturbation energy blowup at T � 0.3T0. As shown in Fig. 5b, this unphysical behavior was characterized
by orders-of-magnitude increase in the energy growth rate in a very short period of time. When the resolution
was increased to k = 8, the same blowup occurred, but at a later time T/T0 � 1, making the diagnosis of this
instability more difficult.

The source of this instability is similar to that of the instability occurring in the Qk � Qk�2 spectral element
solution scheme for the Navier–Stokes equations reported in [42]. For the same Orr–Sommerfeld problem,
Wilhelm and Kleiser [42] observed unphysical perturbation energy growth when the divergence form of the
nonlinear term was discretized. Through an eigenvalue analysis of the full discretized linear system, they found
eigenvalues with positive real parts (see Fig. 8 in [42]). Furthermore, they showed that the divergence of the
velocity field grew exponentially at those points for which the divergence-free constraint was not enforced (see
Figs. 4 and 5 in [42]). For our mixed-order DG formulation the situation is similar. Since the velocity and
pressure nodes are different, there is a chance of unphysical instability. For the equal-order method, however,
velocity and pressure nodes are identical; thus, the formulation is stable. The rigorous analysis of the stability
of the method will be addressed in a forthcoming paper.

4.4. Flow past a square cylinder

As a final test, we examine the spatial accuracy of our method by simulating vortex shedding in flow past a
square cylinder at Re = 100, based on the unit inflow velocity and the square edge length. The geometry con-
sisted of a unit square located in a rectangular domain with vertices (�16,�22), (25,�22), (�16,22), and
(25,22), where the origin was placed in the center of the cylinder (see Fig. 6, left). This yields a blockage ratio
B = 2.3%. This geometry is identical to the geometry used in [27] and is chosen because it leads to geometry-
independent results as shown in [28]. With flow in the positive x-direction, we imposed the following boundary
conditions: zero Dirichlet BCs on the square, u = (1,0) on the inlet and side walls and outflow BCs at the out-
let. The mesh consists of 1706 triangles concentrated on the cylinder to resolve the large gradient of vorticity
associated with the sharp corners (Fig. 6). We used the Pk � Pk method with k = 4 and Dt = 10�3.

An instantaneous view of the calculated vorticity contours are shown in Fig. 7, demonstrating the von-Kar-
man vortex downstream of the cylinder. For comparison with available data in the literature, we calculated the
Strouhal number St = fD/u, where f is the frequency of the vortex shedding, u = 1 the inflow velocity and
D = 1 the edge length of the cylinder. The frequency was obtained from spectral analysis of the lift coefficient
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Table 1
Comparison of Strouhal number for vortex shedding in flow over a square cylinder at Re = 100

Approach St

Okajima [34, experimental], B = 0% 0.141–0.145
Darekar and Sherwin [27], B = 2.3% 0.145
Present, B = 2.3% 0.145

B is the blockage ratio.
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sampled over the time span of t = 20 dimensionless times, D/u. Our results, along with experimental data of
Okajima [34] and the computational result of Darekar and Sherwin [27], are listed in Table 1. The latter was
obtained using a spectral element Navier–Stokes solver with 1502 triangular elements of order k = 6. The total
number of unknowns of this resolution was almost identical to that of the lower resolution (1706 triangles of
order k = 4) used in our DG simulation. As is clear from the table, we obtained excellent agreement with both
experimental and computational data.

5. Conclusions

We have introduced a simple and efficient method for the numerical solution of the unsteady incompress-
ible Navier–Stokes equations in convection-dominated flow regimes. The method is based on nodal high-order
discontinuous Galerkin methods on triangular and tetrahedral meshes and a second order approximate alge-
braic splitting method. The scheme yields compact stencil sizes for the nonlinear term, and velocity and pres-
sure operators well suited for large-scale parallel computations.

We have verified the temporal and spatial performance of the method on several benchmarking problems.
We obtained second-order temporal convergence and spectral spatial convergence, as expected. On the chal-
lenging Orr–Sommerfeld test problem, we observed that equal-order polynomial approximations of the veloc-
ity and pressure led to a stable solution, while the mixed-order method yielded an unphysical instability. The
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equal-order method also performed well in simulating vortex shedding in flow past square cylinder at
Re = 100.

Several aspects of our implementation can be improved to achieve higher efficiency. First, employing non-
conforming mesh adaptation close to the Dirichlet boundaries can significantly reduce the required global
degrees of freedom for a given accuracy. Second, efficient preconditioning for the Poisson pressure equation
should be devised. The class of optimal two-level overlapping Schwarz preconditioners for the p-version finite
element methods recently introduced in [35] can be applicable in the discontinuous Galerkin setting.

Moreover, the cost of core kernels, such as elemental stiffness matrix construction and elemental stiffness
matrix–vector multiplication, can be reduced. In our current implementation using a nodal basis, the cost
of these operations with respect to the approximating polynomial degree k is Oðk2dÞ floating point operations.
This limits the order of approximation to only moderately high values (k < 12 for two dimensions and k < 6
for three dimensions). Recently, Beuchler and Schöberl [33] introduced a new modal formulation for p-version
finite element methods, using integrated Jacobi polynomials. In this formulation, the calculation of the core
kernels requires only OðkdÞ floating-point operations. This is significantly lower than those of our current
nodal implementation and even the spectral element formulation on tensor product domains (which is
Oðkdþ1)). Application of this formulation to discontinuous Galerkin methods is ongoing.
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